

LA-UR-18-21242

Approved for public release; distribution is unlimited.

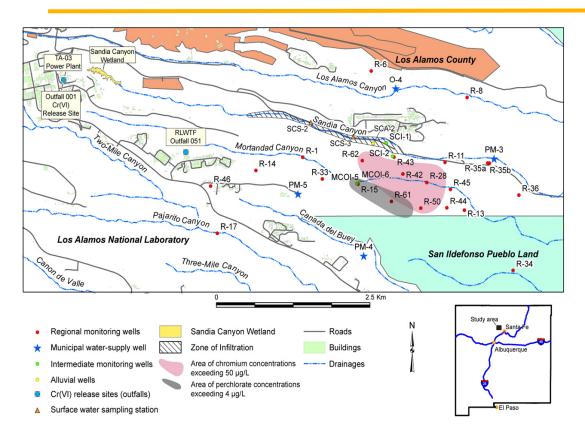
Title: The Use of Sodium Dithionite for the Remediation of Hexavalent

Chromium in Mortendad Canyon

Author(s): Telfeyan, Katherine Christina

Intended for: talk for navarro

Issued: 2018-02-15


The Use of Sodium Dithionite for the Remediation of Hexavalent Chromium in Mortandad Canyon

Katherine TelfeyanEarth System Observations EES-14 Radiogeochemistry Group

February 15, 2017

Cr(VI) Plume in Groundwater at LANL

- Cr(VI) highly soluble and toxic
- Used as anti-corrosion agent in mid 1900s
- Effluent has led to legacy waste
- Remediation requires use of in-situ redox barrier

Heikoop et al., 2014

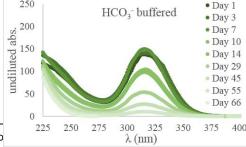
Sodium Dithionite (Na₂S₂O₄)

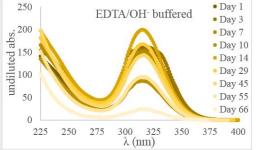
- Strong reducing agent
- Industrial uses and environmental remediation
 - $S_2O_4^{2-} + 2Fe(III)_{(s)} + 2H_2O = SO_3^{2-} + 2Fe(II)_{(s)} + 4H^+$
 - $3Fe(II)_{(s)} + HCrO_4^- + 4H^+ = Cr(OH)_{3(s)} + 3Fe(III)_{(s)} + 2H_2O$
- Degrades rapidly in the presence of oxygen or in water
 - Previously reported reaction products: SO_3^{2-} , $S_2O_3^{2-}$, H⁺
- No uniform degradation rate and reaction mechanism
 - Slower degradation in alkaline solution
 - Longest record of dithionite in solution: 2-3 weeks

Study Objectives

Determine the degradation rate and products of dithionite in anaerobic alkaline aqueous solution

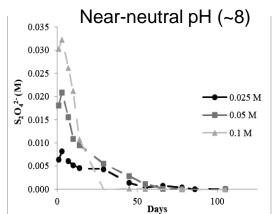
Determine the reduction capacity of II. dithionite-treated sediments for Cr(VI)

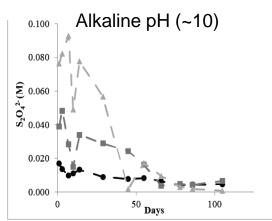


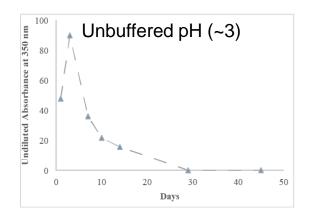

I. Dithionite Decomposition in Aqueous Solution Methods

- Dithionite solutions of varying concentrations (0.1 M, 0.05 M, 0.025 M) prepared in unbuffered solutions, 0.1 M bicarbonate solution (pH ~8), Fisher buffer solution of EDTA/carbonate/tetraborate/hydroxide (pH~10)
- Immediately flame sealed to prevent oxygen intrusion or loss of H₂S
- Measurements taken over 100 days
 - Ion Chromatography: Oxidized S (SO₄²-)
 - Iodometric Titration: Total Reduced Sulfur ($\Sigma S_2O_4^{2-}$, SO_3^{2-} , $S_2O_3^{2-}$, H_2S/HS^- , polythionates (except $S_2O_6^{2-}$)
 - UV-vis analysis: S₂O₄²⁻ and SO₃²⁻
 - Titration with formaldehyde: S₂O₃²⁻
 - Precipitation with Cd(CH₃COO)₂ and titration with iodine: H₂S/HS-
 - Missing: S as zero-valent S or in polysulfane chains

Dithionite (S₂O₄²⁻) Degradation Through Time Monitored by UV-vis




I. Dithionite Decomposition in Aqueous Solution Results-Dithionite


- Loss of dithionite more rapid at low pH
- 0.05 M and 0.025 M solutions of unbuffered dithionite completely hydrolyzed in <1 day

- Half-life in alkaline buffer: 33.6 days
- Dithionite measureable at highest pH for 105 days and at near-neutral pH for 50-60 days

UNCLASSIFIED

Slide 6

I. Dithionite Decomposition in Aqueous Solution Results-Degradation Products

0.025

0.020

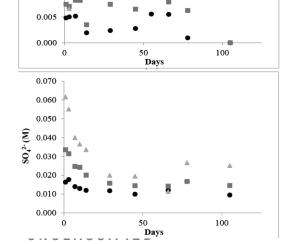
0.005

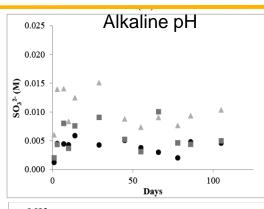
0.000

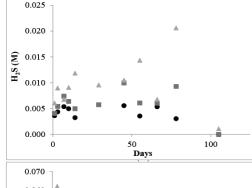
0.025

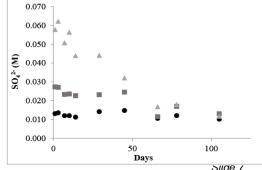
0.020

0.015 H 0.010 Near-neutral pH


Davs


● 0.025 M ■ 0.05 M

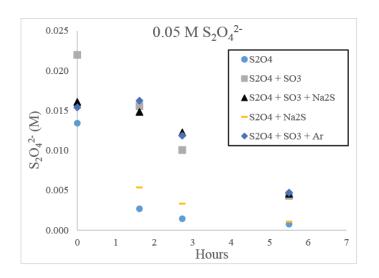

▲ 0.1 M

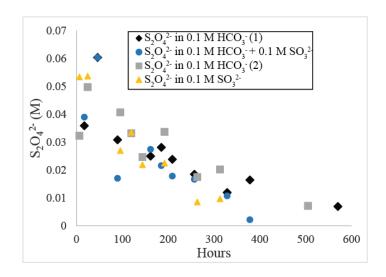

100

- No S₂O₃²⁻ present
- H₂S/HS-, SO₃²⁻, SO₄²⁻ significant products
- Sulfur mass balance yields "missing reduced S" not determined by current methods
 - Accounts for ~10 % in alkaline pH solution, ~30 % in nearneutral of total S
 - Possibly zero valent sulfur, some of the polythionates, elemental sulfur
 - $S_4O_6^{2-}$

I. Dithionite Decomposition in Aqueous Solution Results-Hydrolysis Reaction and Kinetic Law

- Stoichiometry determined from reaction products
- Near-neutral pH, represents relatively rapid degradation


•
$$4 S_2 O_4^{2-} + H_2 O = HS^- + SO_3^{2-} + 2 SO_4^{2-} + S_4 O_6^{2-} + H^+$$


- At more alkaline pH and over longer time scales:
 - $3 S_2 O_4^{2-} + 3 H_2 O = 2 H S^- + S O_3^{2-} + 3 S O_4^{2-} + 4 H^+$
- Rate-law determined to be first order with respect to dithionite and fractional order with respect to [H+]
 - $\frac{dC_i}{dt} = S_i 10^{-4.81} \{H^+\}^{0.24} \{S_2 O_4^{\ 2-}\}$ (Si: stoichiometric coefficient of i, Ci: concentration of i)
 - Decomposition a function of pH not previously incorporated into rate laws

Buffer Solutions

Aquifers near saturation with respect to calcite

 Buffer the solution during field injection while maintaining circumneutral pH using reaction products of dithionite degradation

Slide 9

II. Batch and Column Experiments Methods

Sediments from Mortendad Canyon treated with Na₂S₂O₄ in batch and column experiments

- Determine reduction capacity of sediment with optimal $S_2O_4^{2-}$ concentration
- Determine potential release of harmful byproducts (As, Mn, SO₄²⁻)

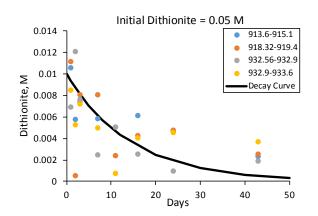
Batch Experiments

- 5g 4 different sediments treated with 0.025 M,
 0.05 M, 0.1 M dithionite buffered with HCO₃⁻
- Sampled over 43 days for S₂O₄²⁻, SO₄²⁻, pH, trace metals (Fe, Mn, Cr, As)
- Added excess Cr(VI) solution to treated sediments to determine maximum reduction capacity

II. Batch and Column Experiments Methods

Sediments from Mortendad Canyon treated with Na₂S₂O₄ in batch and column experiments

- Determine reduction capacity of sediment with optimal $S_2O_4^{2-}$ concentration
- Determine potential release of harmful byproducts (As, Mn, SO_4^{2-})

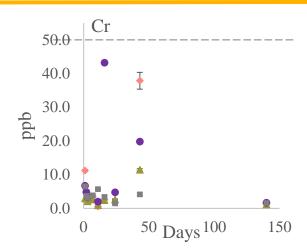

Column Experiments

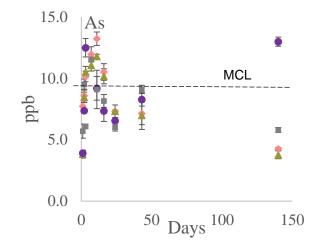

- 230 g sediment in columns with 60 mL pore volumes, residence time 2 days
- 2 pore volumes of 0.05 M Na₂S₂O₄ buffered with 0.05 M Na₂SO₃ and 400 ppm LiBr tracer in background solution of Cr(VI) contaminated water from Mortendad Canyon (900 ppb) followed by injection of contaminated aquifer water until breakthrough of Cr(VI)
- Eluent measured for major ions, major cations, trace metals
- Treated sediment cut into 1 cm intervals and leached with 2
 M HNO₃

II. Batch and Column Experiments Batch Results

Loss of dithionite by 43 days & production of Fe

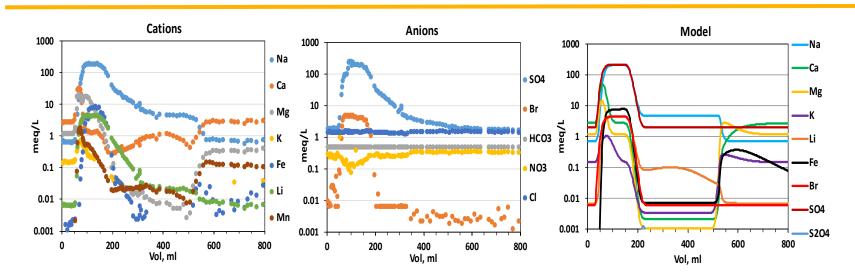
- Rapid decomposition of dithionite: $4 S_2 O_4^{2-} + H_2 O_4^{2-} + S_4 O_6^{2-} + H_4^{-}$ = $HS^- + SO_3^{2-} + 2 SO_4^{2-} + S_4 O_6^{2-} + H_4^{-}$
- 0.01 M extra $S_2O_4^{2-}$ lost compared to blank experiments: $S_2O_4^{2-} + 2Fe(III)(s) + 2H_2O = SO_3^{2-} + 2Fe(II)_{(s)} + 4H^+$
- Per g of sediment: consume $2x10^{-5}$ moles $S_2O_4^{2-}$ and generates $2x10^{-6}$ moles Fe
- First-order decomposition rate after initial decomposition and assume that 0.35 moles of Fe generated for every mole of dithionite consumed
- After 150 days Fe(II) readsorbs/reprecipitates

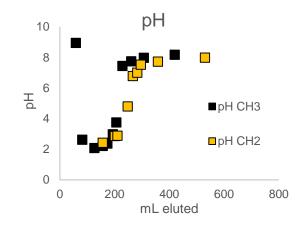



UNCLASSIFIED

II. Batch and Column Experiments Batch Results

- Cr and As near to below MCL
- Max Cr uptake from treated sediments 1500-2500 mg
 Cr/kg sediment
- 30-99% of all Fe in the sediments required for this reduction
- No correlation between uptake and Fe or surface area
- Fe cannot account for all of the reductive capacity generated by the sediments

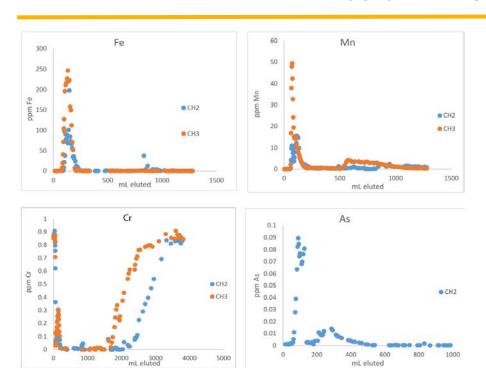


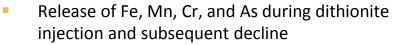


...

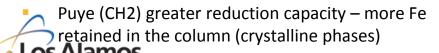
II. Batch and Column Experiments Column Results

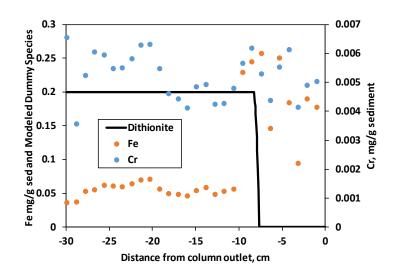
- Cation exchange reactions during injection of Li and Na
- pH drops to ~ 3. 4 moles of H+ are produced for every 2 moles of Fe(III) reduced





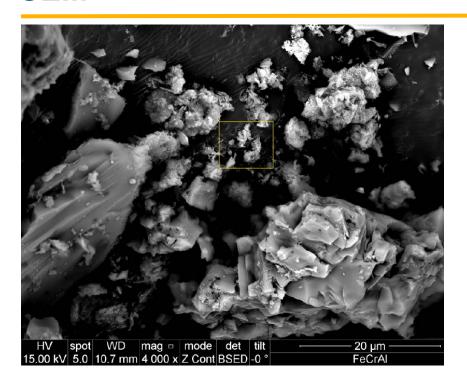
UNCLASSIFIED

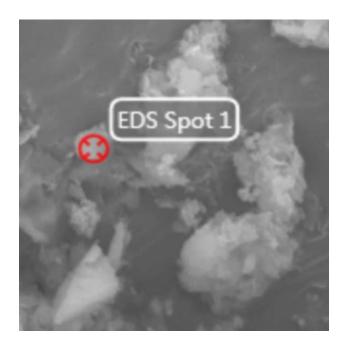


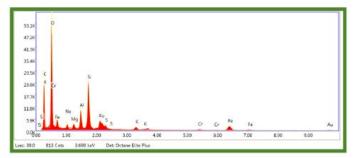

II. Batch and Column Experiments Column Results

Cr breakthrough occurs after ~ 30-50 pore volumes

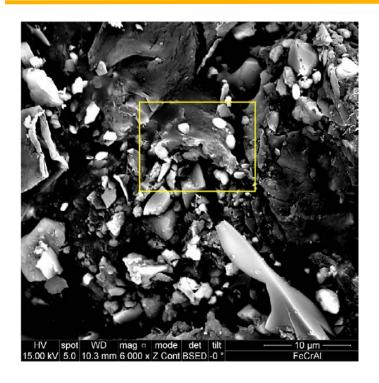
- Sediment leached with 2% HNO₃
- Predict dithionite dissolution of Fe occurred through 2/3 of the column and redeposited by cation exchange
 - Cr reduction and precipitation independent of Fe

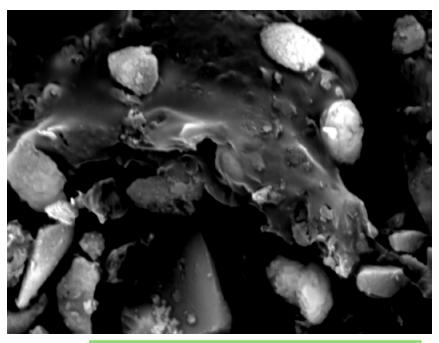

Slide 15

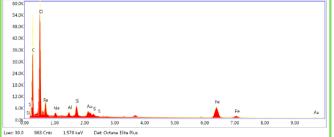

II. Batch and Column Experiments Sulfur


- Mass balance of S into and out of columns suggests loss of S to column....FeS minerals?
- Addition of Cr(VI) to treated sediments in batch experiments suggest >100% efficiency in reduction if only Fe(II) is being oxidized.
- Is S from the dithionite injection reacting with the sediment and contributing to its reduction capacity?
- Current and Future Work
 - Determine S speciation in sediment and effect on Cr(VI) reduction
 - Ongoing field pilot tests

SEM






UNCLASSIFIED

SEM

D

Slide 18

Dithionite Study Conclusions

- Blank experiments demonstrate that S₂O₄²⁻ exists in a closed system, such as a confined aquifer, for longer than previously expected
 - H₂S/HS⁻ is an important reaction product previously overlooked. Failure to thoroughly maintain a closed system may have led to shorter predicted dithionite lifetimes in previous studies
- $S_2O_4^{2-}$ effectively reduces sediment $Fe(III)_{(s)}$ to $Fe(II)_{(s)}$, releasing minor amounts of $Fe(II)_{(aq)}$
- Mn and As release during dithionite injection likely linked with Fe release during reduction and ion exchange. After injection, concentrations return to background.
- With extended contact time (batch experiments), dithionite-treated sediments may remove up to 2500 mg Cr/kg sediment. Column studies suggest that dithionite-treated sediments will remove up to 30 pore volumes of contaminated water (900 ppb Cr(VI)).
- Fe is not exclusively responsible for the reduction capacity imparted to the
 sediments from the dithionite treatment.

Thank you!!

- Thanks to Rose Harris, Doug Ware, and Sarah Sams for assistance with sampling
- Kai Williams, David Chu, and Oana Marina for ICP and IC analysis
- Sachin Pandey and Velimir Vesselinov for kinetic modeling
- Funded by Department of Energy Office of Environmental Management

